娇小w搡bbbb搡bbb,《第一次の人妻》,中国成熟妇女毛茸茸,边啃奶头边躁狠狠躁视频免费观看

寬帶數據轉換器應用的JESD204B與串行LVDS接口考量

發布者:EE小廣播最新更新時間:2021-11-01 來源: EEWORLD作者: ADI公司 George Diniz,產品線經理關鍵字:寬帶  轉換器  串行  LVDS  接口 手機看文章 掃描二維碼
隨時隨地手機看文章

JESD204B vs. Serial LVDS Interface Considerations for Wideband Data Converter Applications


寬帶數據轉換器應用的JESD204B與串行LVDS接口考量


Abstract

摘要


The JESD204A/JESD204B industry standard for serial interfaces was developed to address the problem of interconnecting the newest wideband data converters with other system ICs in an efficient and cost saving manner. The motivation was to standardize an interface that would reduce the number of digital inputs/outputs between data converters and other devices, such as field programmable gate arrays (FGPAs) and system on a chip (SoC) devices through the use of a scalable high speed serial interface.


開發串行接口業界標準JESD204A/JESD204B的目的在于解決以高效省錢的方式互連最新寬帶數據轉換器與其他系統IC的問題。其動機在于通過采用可調整高速串行接口,對接口進行標準化,降低數據轉換器與其他器件(如現場可編程門陣列FPGA和系統級芯片SoC)之間的數字輸入/輸出數量。


Trends show that new applications, as well as advances in existing ones, are driving the need for wideband data converters with increasingly higher sampling frequencies and data resolutions. Transmitting data to and from these wideband converters poses a significant design problem as bandwidth limitations of existing I/O technologies force the need for higher pin counts on converter products. Consequently, systems’ PCB designs have become increasingly more complex in terms of interconnect density. The challenge is routing a large number of high speed digital signals while managing electrical noise. The ability to offer wideband data converters with GSPS sampling frequencies, using fewer interconnects, simplifies the PCB layout challenges, and allows for smaller form factor realization without impacting overall system performance.


趨勢顯示最新應用,以及現有應用的升級,正不斷需求采樣頻率和數據分辨率更高的寬帶數據轉換器。向這些寬帶轉換器傳送和獲取數據暴露了一個非常大的設計問題,即現有I/O技術帶寬的限制導致轉換器產品需要使用的引腳數更多。其結果便是PCB設計隨著互連密度的增加而更復雜。其挑戰在于進行大量高速數據信號走線的同時控制電噪聲,以及提供GSPS級別的寬帶數據轉換器采樣頻率的能力、使用更少的互連、簡化PCB布局難題并實現更小的尺寸,且不降低整體系統性能。


Market forces continue to press for more features, functionality, and performance in a given system, driving the need for higher data-handling capacity. The high speed analog-to-digital converter and digital-to-analog converter-to-FPGA interface had become a limiting factor in the ability of some system OEMs to meet their next generation data-intensive demands. The JESD204B serial interface specification was specifically created to help solve this problem by addressing this critical data link. Figure 1 shows typical high speed converter-to-FPGA interconnect configurations using JESD204A/JESD204B.


市場力量繼續施壓,要求給定系統擁有更多特性和功能以及更好的性能,推動了對更高數據處理能力的要求。高速模數轉換器數模轉換器至FPGA接口已成為某些系統OEM廠商滿足下一代大量數據處理需要的限制因素。JESD204B串行接口規范專為解決這一關鍵數據鏈路的問題而建立。圖1顯示使用JESD204A/JESD204B的典型高速轉換器至FPGA互連配置。


Some key end-system applications that are driving the deployment of this specification, as well as a contrast between serial low voltage differential signaling (LVDS) and JESD204B, are the subject of the remainder of the article.


本文余下篇幅將探討推動該規范發展的某些關鍵的終端系統應用,以及串行低壓差分信號(LVDS)和JESD204B的對比。

 

image.png

Figure 1. Typical high speed converter to FGPA interconnect configurations using JESD204A/JESD204B interfacing (Source: Xilinx?).

圖1.使用JESD204A/JESD204B接口的典型高速轉換器至FGPA互連配置(來源:Xilinx?)。


The Applications Driving the Need for JESD204B

應用推動對JESD204B的需求


Wireless Infrastructure Transceivers

無線基礎設施收發器


OFDM-based technologies, such as LTE, used in today’s wireless infrastructure transceivers use DSP blocks implemented on FPGAs or SoC devices driving antenna array elements to generate beams for each individual sub- scriber’s handset. Each array element can require movement of hundreds of megabytes of data per second between FPGAs and data converters in both transmit or receive modes.


目前無線基礎設施收發器采用LTE等基于OFDM的技術,這類技術使用部署FPGA或SoC器件的DSP模塊,通過驅動天線陣列元件,單獨為每個用戶的手機產生波束。在發射和接收模式下,每個陣列元件每秒可能需要在FPGA和數據轉換器之間傳輸數百兆字節的數據。


Software-Defined Radios

軟件定義無線電


Today’s software-defined radios utilize advanced modulation schemes that can be reconfigured on the fly, and rapidly increasing channel bandwidths, to deliver unprecedented wireless data rates. Efficient, low power, low pin count FPGA-to-data converter interfaces in the antenna path play a critical role in their performance. Software-defined radio architectures are integral to the transceiver infrastructure for multicarrier, multimode wireless networks supporting GSM, EDGE, W-CDMA, LTE, CDMA2000, WiMAX, and TD-SCDMA.


當今的軟件定義無線電技術利用先進的調制方案,可即時重配置,并極大地增加了通道帶寬,提供最佳的無線數據速率。天線路徑中高效、低功耗、低引腳數的FPGA至數據轉換器接口對性能起著決定性的作用。軟件定義無線電架構已與收發器基礎設施相整合,用于多載波、多模無線網絡,支持GSM、EDGE、W-CDMA、LTE、CDMA2000、WiMAX和TD-SCDMA。


Medical Imaging Systems

醫療成像系統


Medical imaging systems including ultrasound, computational tomography (CT) scanners, magnetic resonance imaging (MRI), and others generate many channels of data that flow through a data converter to FPGAs or DSPs. Continually increasing I/O counts are driving up the number   of components by requiring the use of interposers to match FPGA and converter pin out and increasing PCB complexity. This adds additional cost and complexity to the customer’s system that can be solved by the more efficient JESD204B interface.


醫療成像系統包括超聲、計算機斷層掃描(CT)的掃描儀、磁共振成像(MRI)等,這些應用產生很多通道的數據,流經數據轉換器至FPGA或DSP。I/O通道數的持續增長要求使用內插器匹配FPGA和轉換器的引腳輸出,迫使元件數增加,并使PCB復雜化。這加大了客戶系統的成本支出以及復雜程度;而這些問題可通過采用更有效的JESD204B接口加以解決。


Radar and Secure Communications

雷達和安全通信


Increasingly sophisticated pulse structures on today’s advanced radar receivers are pushing signal bandwidths toward 1 GHz and higher. Latest generation active electronically scaled array (AESA) radar systems may have thousands of elements. High bandwidth SERDES-based serial inter- faces are needed to connect the array element data converters to the FPGAs or DSPs that process incoming and generate outgoing data streams.

目前先進雷達接收器的脈沖結構日益復雜,迫使信號帶寬上升至1 GHz或更高。最新的有源電子調整陣列(AESA)雷達系統可能包含上千個元件。高帶寬SERDES串行接口用于連接陣列元件數據轉換器與FPGA或DSP,處理接收到的數據流,并將處理后產生的數據流發送出去。


Serial LVDS vs. JESD204B

串行LVDS與JESD204B的對比


Choosing Between Series LVDS and JESD204B Interface

在串行LVDS和JESD204B接口之間選擇 


In order to best select between converter products that use either LVDS    or the various versions of the JESD204 serial interface specification, a comparison of the features and capabilities of each interface is useful. A short tabular comparison is provided in Table 1. At the SERDES level, a notable difference between LVDS and JESD204 is the lane data rate, with JESD204 supporting greater than three times the serial link speed per lane when compared with LVDS. When comparing the high level features like multidevice synchronization, deterministic latency, and harmonic clocking, JESD204B is the only interface that provides this functionality. Systems requiring wide bandwidth multichannel converters that are sensitive to deterministic latency across all lanes and channels won’t be able to effectively use LVDS or parallel CMOS.


為了在使用LVDS和多種版本JESD204串行接口規范的轉換器產品間做出最佳選擇,對每種接口的特性和功能進行比較會非常有用。表1以簡單的表格形式對接口標準進行了對比。在SERDES級,LVDS和JESD204之間的顯著區別是通道數據速率,JESD204支持的每通道串行鏈路速率是LVDS的三倍以上。當比較諸如多器件同步、確定延遲和諧波時鐘等高級功能時,JESD204B是提供這些功能的唯一接口。所有通路和通道對確定延遲敏感、需要寬帶寬多通道轉換器的系統將無法有效使用LVDS或并行CMOS。


Table 1. Comparison Between Serial LVDS and JESD204 Specifications

表1.串行LVDS和JESD204規范對比

image.png


LVDS Overview

LVDS概述


LVDS is the traditional method of interfacing data converters with FPGAs or DSPs. LVDS was introduced in 1994 with the goal of providing higher bandwidth and lower power dissipation than the existing RS-422 and RS-485 differential transmission standards. LVDS was standardized with the publication of TIA/EIA-644 in 1995. The use of LVDS increased in the late 1990s and the standard was revised with the publication of TIA/EIA-644-A in 2001.


LVDS是連接數據轉換器與FPGA或DSP的傳統方法。LVDS于1994發布,目標在于提供比已有的RS-422和RS-485差分傳輸標準更高的帶寬和更低的功耗。隨著1995年TIA/EIA-644的發布,LVDS成為標準。二十世紀90年代末,LVDS的使用率上升,并隨著2001年TIA/EIA-644-A的發布,LVDS標準亦發布了修訂版。


LVDS uses differential signals with low voltage swings for high speed data transmission. The transmitter typically drives ±3.5 mA with a polarity matching the logic level to be sent through a 100 Ω resistor, generating a ±350 mV voltage swing at the receiver. The always-on current is routed in different directions to generate logic ones and zeros. The always-on nature of LVDS helps eliminate simultaneous switching noise spikes and potential electromagnetic interference that sometimes occur when transistors are turned on and off in single-ended technologies. The differential nature of LVDS also provides considerable immunity to common-mode noise sources. The TIA/EIA-644-A standard recommends a maximum data rate of 655 Mbps, although it predicts a possible speed of over 1.9 Gbps for an ideal transmission medium.


LVDS采用低電壓擺幅的差分信號,用于高速數據的傳輸。發射器驅動的電流典型值為±3.5 mA,通過100 Ω電阻發送極性匹配的邏輯電平,在接收器端產生±350 mV電壓擺幅。電流始終導通,并被路由至不同方向以便產生邏輯1和邏輯0。LVDS始終導通的特性有助于抑制同步開關噪聲尖峰和潛在電磁干擾——在單端技術中,晶體管的開關動作可能產生這些噪聲和干擾。LVDS差分的特征同樣提供了針對共模噪聲源的有效抑制。雖然在理想傳輸介質中,該標準預測速率可能超過1.9 Gbps,但TIA/EIA-644-A標準建議的最大數據速率為655 Mbps。


The huge increase in the number and speed of data channels between FPGAs or DSPs and data converters, particularly in the applications described earlier, has created several issues with the LVDS interface (see Figure 2). The bandwidth of a differential LVDS wire is limited to about 1.0 Gbps in the real world. In many current applications, this creates the need for a substantial number of high bandwidth PCB interconnects, each of which is a potential failure point. The large number of traces also increases PCB complexity or overall form factor, which raises both design and manufacturing costs. In some applications, the data converter interface becomes the limiting factor in achieving the required system performance in bandwidth hungry applications.


FPGA或DSP與數據轉換器間數據通道和速度的大幅增長——尤其是前文討論的那些應用——使LVDS接口暴露了一些問題(見圖2)。現實中,差分LVDS線的帶寬限制在1.0 Gbps左右。在目前很多應用中,這一限制導致需要許多高帶寬PCB互連,而每一處都有可能出故障。大量的走線還增加了PCB的復雜性或整體尺寸,導致設計和制造成本上升。在某些帶寬需求量巨大的應用中,數據轉換器接口已成為滿足所需系統性能的制約因素。


 image.png

Figure 2. Challenges in system design and interconnect using parallel CMOS or LVDS.

圖2.使用并行CMOS或LVDS帶來的系統設計與互連的挑戰。


JESD204B OVERVIEW

JESD204B概述


The JESD204 data converter serial interface standard was created by the JEDEC Solid State Technology Association JC-16 Committee on Interface Technology with the goal of providing a higher speed serial interface for data converters to increase bandwidth and reduce the number of digital inputs and outputs between high speed data converters and other devices. The standard builds on 8b/10b encoding technology developed by IBM that eliminates the need for a frame clock and a data clock, enabling single line pair communications at a much higher speed.

[1] [2]
關鍵字:寬帶  轉換器  串行  LVDS  接口 引用地址:寬帶數據轉換器應用的JESD204B與串行LVDS接口考量

上一篇:ADC前端設計科普貼——ADC采樣前端模型初探
下一篇:TI全新精密寬帶寬ADC可提升數據采集性能

推薦閱讀最新更新時間:2025-05-31 07:39

SPI串行接口AD轉換器TLC2543的驅動程序
SPI串行接口AD轉換器TLC2543的驅動程序 //-----------------------函數聲明,變量定義-------------------------------------------------------- #include reg51.h #include intrins.h //-------------------------------------------------------------------------------------------------- // 2543控制引腳宏定義 //-------------------------------------------
[單片機]
一種基于LVDS的高速串行數據傳輸系統設計
引言 在某型雷達信號處理系統中,要求由上位機(普通PC)實時監控雷達系統狀態并采集信號處理機的關鍵變量,這就要求在處理機與上位機之間建立實時可靠的連接。同時,上位機也能對信號處理板進行控制,完成諸如處理機復位、DSP程序動態加載等功能。實驗中,處理機和上位機之間的數據傳輸距離不小于8m。在這種前提下,計算機上現有的串口、并口顯然不能滿足要求,而USB2.0接口工作在高速模式時傳輸距離只有3m,其它諸如以太網傳輸的實時性難于滿足要求,光纖通道傳輸的構建成本又太高。基于此,本文提出了一種采用LVDS高速串行總線技術的傳輸方案。 數據傳輸系統方案 由于系統要求傳輸距離大于8m,需采用平衡電纜。對于兩端LVDS接口,可以采用ASIC
[網絡通信]
LVDS接口電路設計
  1 引 言   對于高速電路,尤其是高速數據總線,常用的器件一般有ECL、BTL和GTL等。這些器件的工藝成熟,應用也較為廣泛,但都存在一個共同的弱點,即功耗大。此外, 采用單端信號的BTL 和GTL器件,電磁輻射也較強。目前, NS公司率先推出的CMOS工藝的低電壓差分信號器件, 即LVDS給了人們另一種選擇。   2 LVDS技術簡介   LVDS(Low Voltage Differential Signaling)是一種小振幅差分信號技術,使用非常低的幅度信號(約350 mV)通過一對差分PCB走線或平衡電纜傳輸數據。它允許單個信道傳輸速率達到每秒數百兆比特,其特有的低振幅及恒流源模式驅動只產生極低的噪聲,
[嵌入式]
單片機與串行時鐘DS1307的接口設計
在簡單介紹串行時鐘芯片ds1307的基礎上,介紹了時鐘電路的rs485接口設計8本文所設計的時鐘電路具有體積小、抗干擾性能強、通用性好、調時方便等特點。 0 引言 由單片機構成的測控系統或智能顯示屏中,經常需要實時日歷時鐘,為節省CPU資源,增強實時時鐘電路的通用性,本文介紹DS1307的應用及其接口設計,該時鐘系統用RS485接口,采用SN75176差分平衡驅動接收,具有抗干擾能力強,可與PC機進行遠距離的通信也可以與其他控制電路相連;時鐘調時可方便地用PC機或電路中設置的按鍵進行時間設定和修改。 1、串行時鐘DS1307簡介 DS1307是I2C總線接口的日歷時鐘芯片,片內有8個特殊寄存器和56B的SRAM,是一種低功耗、BC
[模擬電子]
Sigma Designs推出Z-Wave串行接口模塊
即插即用的調制解調器提供了前所未有的集成方便性和迄今為止最快的上市速度。 Marketwired 2014年6月9日美國加利福尼亞州米爾皮塔斯消息――面向智能電視、智慧家居和IP機頂盒的智能系統級芯片(SoC)解決方案的領先提供商Sigma Designs(納斯達克股票代碼:SIGM)推出了最新的Z-Wave(R)串行接口模塊及天線ZM5304,并開始量產。 ZM5304是行業領先的第五代Z-Wave平臺的最新成員,該平臺為易用性、集成度、節能和射頻性能確立了新標準。ZM5304是Sigma Designs最易于集成的解決方案,也是迄今為止上市速度最快的Z-Wave產品。ZM5304不受編程水平低影響,也不存在射頻監
[物聯網]
8051單片機典型接口電路——串行擴展靜態顯示電路
8051單片機典型接口電路——串行擴展靜態顯示電路如下圖所示: 例1:按上圖編制顯示子程序,顯示字段碼已分別存在32H~30H內RAM中。   程序1:   DIR2: MOV SCON,#00H ;置串口方式0   CLR ES ;串口禁中   SETB P1.0 ;“與”門開,允許TXD發移位脈沖   MOV SBUF,30H ;串行輸出個位顯示字段碼   JNB TI,$ ;等待串行發送完畢   CLR TI ;清串行中斷標志   MOV SBUF,31H ;串行輸出十位顯示字段碼   JNB TI,$ ;等待串行發送完畢   CLR TI ;清串行中斷標志   MOV SBUF,32H ;串
[模擬電子]
8051單片機典型<font color='red'>接口</font>電路——<font color='red'>串行</font>擴展靜態顯示電路
基于FPGA和單片機的串行通信接口設計
 摘要:本文針對由FPGA FPGA   現場可編程邏輯門陣列(FPGA, Field Programmable Gate Array),是一個含有可編輯元件的半導體設備,可供使用者現場程式化的邏輯門陣列元件。FPGA是在PAL、GAL、CPLD等可編輯器件的基礎上進一步發展的產物。 構成的高速數據采集系統數據處理能力弱的問題,提出FPGA與單片機 單片機   單片機是單片微型計算機(Single-Chip Microcomputer)的簡稱,是一種將中央處理器CPU隨機存儲器RAM、只讀存儲器ROM、多種I/O口和中斷系統、定時器/計時器等功能(可能還包括顯示驅動電路、脈寬調制電路、模擬多路轉換器、A/D轉換器等電路)采用
[工業控制]
基于FPGA和單片機的<font color='red'>串行</font>通信<font color='red'>接口</font>設計
ADμC812的串行外設接口(SPI)及其應用
摘要:ADμC812是一種新型的集成12位數據采集系統。它的串行外設接口SPI(serial peripheral interface)可進行主機和多片從外圍器件的信息傳遞,即主機對從機的控制及從機向主機提供各種信息等,從而實現系統之間的各種控制和操作。 關鍵詞:ADμC812 串行通信 SPI串行端口 概述 ADμC812是一種全集成的12位數據采集系統。它在單個芯片內包含了高性能的自校準多通道ADC、2個12位DAC以及可編程的8位MCU(與8051兼容)。為便于MCU與各種外圍設備進行通信,ADμC812提供了3種串行I/O端口:UART接口、I2C兼容的串行接口和串行外設接口(SPI)。其中,SPI接口是工業標準的同
[嵌入式]
小廣播
最新模擬電子文章
隨便看看

 
EEWorld訂閱號

 
EEWorld服務號

 
汽車開發圈

 
機器人開發圈

電子工程世界版權所有 京B2-20211791 京ICP備10001474號-1 電信業務審批[2006]字第258號函 京公網安備 11010802033920號 Copyright ? 2005-2025 EEWORLD.com.cn, Inc. All rights reserved
主站蜘蛛池模板: 河东区| 嵊州市| 邵阳县| 昭平县| 翁牛特旗| 石嘴山市| 彭山县| 彭泽县| 清镇市| 沙田区| 普陀区| 芦溪县| 卫辉市| 临桂县| 河池市| 新安县| 浏阳市| 桂平市| 大竹县| 青川县| 阳朔县| 东安县| 新野县| 武平县| 赣榆县| 垣曲县| 房山区| 阿瓦提县| 西和县| 昌都县| 徐闻县| 禹州市| 嘉善县| 鄂尔多斯市| 岱山县| 铜川市| 和平县| 龙南县| 霍州市| 临夏县| 淳安县|